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Measuring interpretability?

® ideally: feedback from real human evaluators
® expensive
® Quantification and automated evaluation of explanation quality

® definition of metrics
® no clear consensus
® dynamically evolving field: new models and new metrics appear frequently
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Literature review — some metric types [4]

® 361 reviewed papers from 2014-2020: explainable models

® 12 metrics proposed for the qualitative evaluation of model-generated
explanations

® 3 main categories:
® content: examines the faithfulness and completeness of the explanation compared
to the explained black-box model
® presentation: concerns the format and layout of the explanation
® user: evaluates the explanation’s effect on the user and how it meets user needs
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Literature review — some metric types [4]

Metric type Metric description

fidelity how accurately the explanation reflects the
behavior of the explained black-box model

completeness to what extent the explanation covers the
behavior of the explained black-box model

consistency how consistent and deterministic the
explanation is

Table: Metrics related to the content of explanations
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Literature review — some metric types [4]

Metric type Metric description

compactness the size of the explanation
composition  the visual format of the explanation

Table: Metrics related to the presentation of explanations
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Literature review — some metric types [4]

Metric type Metric description

context how relevant the explanation is to the user
and their needs
coherence how well the explanation aligns with the user’s

prior knowledge

Table: Metrics measuring the user-related aspects of explanations
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Prototype consistency in image classification models

® starting point: [2] — introduced
interpretability metrics for
prototype-based image classification
models (e.g. ProtoPNet [1])

® measuring prototype consistency: how
consistently a given prototype is activated
in the same object regions (e.g. bird beak)
across different images Image 1 Image 2

Prototype
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Prototype consistency in image classification models — ProtoPNet
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Concept consistency in image segmentation models

® adapting the presented metric to
segmentation

® dataset used: Cityscapes-Panoptic-Parts
[3]
® an extended version of the Cityscapes
dataset: within each semantic class, the
parts of the objects are also annotated,
e.g.:
® persons: torso, head, arm, leg
® cars: wheel, windshield, license plate
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Concept consistency in image segmentation models
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Preliminary results

threshold number of consistent concepts

0.6 107/256
0.7 82,256
0.8 7/256

Table: Number of consistent concepts of the segmentation model at different thresholds, on
the Cityscapes dataset, with a training mloU score of 0.64
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Next steps

® definition of additional metrics
® applying the metrics to the ProtoSeg model for comparison

® experiments on other datasets (e.g. Pascal VOC)
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