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The problem of semantic image segmentation

e Safety-critical application areas:

® self-driving cars,

® aviation,

® medical imaging.
® Deep learning models:

® achieve high accuracy,

® lack explanations (“black-box" nature).
® Need for interpretable models:

® reliability and transparency,
® understanding the model’s behavior.
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The problem of semantic image segmentation

CityScapes dataset [3]

® standard benchmark dataset for evaluating
semantic segmentation

® contains images of urban environments
with pixel-level annotations
® 30 semantic classes, including:

® road
® sidewalk
® building etc.

® high-resolution images (1024 x 2048 pixels)




Introduction Related work Our approach
ocoe 00 oo

Self-explaining deep learning models

® built-in interpretability

® through explanatory components

® concept, prototype
® explanations understandable by humans
® combination of:

® intuitive reasoning of classical ML models
® accuracy of deep learning models
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ProtoPNet [1]

strengths: | backbone )
® patch-level prototypes o o
- 0 ThIS looks like..." style reasoning . “:i Z /3
limitations: fou][ow] [} 7=t
® prototypes have learnable weights
® prototype — patch representation «0
e class-specific prototypes "0
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PIP-Net [5]

strengths: backbone
® concept activations

® no learned prototypes
® unsupervised learning

® “sparse classifier”

® cross-class prototypes

sparse classifier m?{pool

classes prototypes features
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Deeplab v3 [2]

® based on the ResNet [4] — -
architecture o poastn
e foundation for multiple - b oy e
prototype-based models E 1] g
® Atrous Spatial Pyramid = -

Pooling (ASPP) = — e

multi-scale representation
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ProtoSeg [7]

backbone

® similar to ProtoPNet

® based on the DeeplLab v3 architecture Z:g
® prototype diversity ensured using 1
Kullback—Leibler divergence
g

class probabilties h g
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ScaleProtoSeg [6]

® prototypes at multiple scales

® |everaging the capabilities of ASPP
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Proposed architecture

® spatially aligned latent
representations
® scale-independent
prototypes
® ASPP: shared weights
® activations examined
at multiple scales

backbone

® class independence

classifier

® ‘“sparse classifier” maxpool

pixel-level ooled

multi-scale
calssification prototype features

prototype features
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Several prototypes belonging to one concept

concept contribution

to semantic classes:
® road (12.29)

® sidewalk (3.68)
e wall (1.29)

e ground (0.71)

N
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Thank you for your attention!

Questions?
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