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The problem of semantic image segmentation

• Safety-critical application areas:
• self-driving cars,
• aviation,
• medical imaging.

• Deep learning models:
• achieve high accuracy,
• lack explanations (“black-box” nature).

• Need for interpretable models:
• reliability and transparency,
• understanding the model’s behavior.
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The problem of semantic image segmentation

CityScapes dataset [3]

• standard benchmark dataset for evaluating
semantic segmentation

• contains images of urban environments
with pixel-level annotations

• 30 semantic classes, including:
• road
• sidewalk
• building etc.

• high-resolution images (1024×2048 pixels)
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Self-explaining deep learning models

• built-in interpretability
• through explanatory components
• concept, prototype

• explanations understandable by humans
• combination of:

• intuitive reasoning of classical ML models
• accuracy of deep learning models
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ProtoPNet [1]

strengths:

• patch-level prototypes

• “This looks like. . . ” style reasoning

limitations:
• prototypes have learnable weights

• prototype – patch representation

• class-specific prototypes
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PIP-Net [5]

strengths:
• concept activations

• no learned prototypes
• unsupervised learning

• “sparse classifier”

• cross-class prototypes
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DeepLab v3 [2]

• based on the ResNet [4]
architecture

• foundation for multiple
prototype-based models

• Atrous Spatial Pyramid
Pooling (ASPP) =
multi-scale representation
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ProtoSeg [7]

• similar to ProtoPNet

• based on the DeepLab v3 architecture

• prototype diversity ensured using
Kullback–Leibler divergence

backbone
CNN

+
ASPP

W

D

H

p1

p2

pm

g1

gm

learned
prototypes

similarity scores
(per pixel)

h
fully connected layer

g2

g
prototype layer

C1

C2

Ck

class probabilties
per pixel



Introduction Related work Our approach

ScaleProtoSeg [6]

• prototypes at multiple scales

• leveraging the capabilities of ASPP
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Proposed architecture

• spatially aligned latent
representations

• scale-independent
prototypes

• ASPP: shared weights
• activations examined

at multiple scales

• class independence
• “sparse classifier”
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Several prototypes belonging to one concept

concept contribution
to semantic classes:

• road (12.29)

• sidewalk (3.68)

• wall (1.29)

• ground (0.71)
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Thank you for your attention!

Questions?
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