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Introduction

Introduction

» Breast cancer is the most common cancer diagnosed
in women

» Early detection through imaging (e.g.,
mammography) significantly improves outcomes

» Mammography is the most frequently used imaging
technique to record the breast tissue
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Datasets

Dataset

» Tissue density has high impact on the lesion
detection performance

» However, not all datasets include this information

» There is a growing demand for multi-modal
computer-aided diagnosis systems
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RABMC — Romanian Adipose Breast
Mammogram Collection

RABMC

» The dataset is collected in collaboration with “Prof.
Dr. Ton Chiricuta” Oncology Institute
» Contains:

> Mammograms
» Tomosinthesis
» Histopathology
» Reports from the doctors
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The type of the tissue
Presence of a lesion
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Location of the lesion

The original reports
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An English version of the report (translated with
ChatGPT)
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Distribution of the data

RABMC

> 289 patients:

» 167 heterogeneous
» 131 homogeneous

P> 187 healthy scans, lesions: 195 benign and 254
malignant

> Age between 32 and 90
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RABMC

» Ensuring compliance with privacy and clinical data
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Anonymization

RABMC

» Ensuring compliance with privacy and clinical data
standards

» All personal identifiers are removed from medical
images and metadata

> Conversion and standardization of imaging formats
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RABMC

(a) Manual segmentation (b) Extracted lesion mask
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Segmentation of Breast Tissue

Segmentation

» Objective: Distinguish lesion regions (foreground)
from healthy breast tissue (background)

» Enhances the performance and reliability of
automated breast cancer detection systems
= we propose the use of a convolutional neural
network




Lightweight Segmentation Model
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Receptive field

Segmentation » The region of the input space that contributes to a
neuron’s activation

» In convolutional networks, this receptive field
expands progressively with each added layer

» Visualization of the receptive field produced by two
consecutive convolutional layers using 3 x 3 kernels

with a stride of 1
[T 1]




Lightweight Segmentation Model

Results

patch ground truth  prediction

Segmentation
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» The manual segmentation must be revised

Conclusions
and Future >
Work

The preliminary results of the lightweight CNN
model are promising

» Fine-tuning the proposed lightweight model

» Training more complex self-explanatory models like
ProtoSeg

» Training a multi-modal system, considering the
histopathological reports
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